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1 Abstract

Cells are constantly evaluating the fitness of their neighbours in order
to prevent DNA-damaged cells from proliferating and propagating through
the organism. They do so via cell competition. Given the important role
that cell fitness plays in ageing and cancer, it is no wonder why cell compe-
tition is a topic of increasing interest in the biomedical community. The aim
of this project is to understand cell competition in the context of early in
vitro gastrulation. To do so, we construct two models. On the one hand, a
deterministic continuous model, and on the other, a stochastic agent-based
model. The agent based models allowed us to study the role of diffusion and
interaction length unraveling the different dynamics of cell-cell competition.

2 Introduction

Cell competition

Developmental biology studies the growth and development of tissues and
organs, including that characteristic of embryonic development (embryogen-
esis).

Embryogenesis requires a level of coordination between cells that enables
proliferation, migration, and the adoption of different identities [1]. This
process is carefully regulated by gene expression and will culminate in the
formation of a multicellular living system.
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Figure 1: Early stages of embryogenesis. Picture adapted from [2].
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Figure 2: Types of cell movements during gastrulation. [1]

The starting point of embryogenesis is fecundation — the fusion of the
egg and the sperm cell. Subsequent to fertilisation, the zygote is formed.
This is subjected to several miotic divisions [2] or cleavages (see Figure 1),
which will eventually form the blastula, a yolk-filled cavity enclosed by a
cell layer. Following the constitution of the single-layered blastula, the cells,
called blastomeres, are reorganised into a multilayered configuration: the gas-
trula. By the end of gastrulation, cell differentiation and symmetry breaking
take place, leading to organogenesis.

Gastrulation demands full organisation between ingression (cell migra-
tions), and other movements that involve the entire embryo (see Figure 2 for
full list). This means there is a strong spatial component inherent to the
process of gastrulation. Furthermore, we know cell competition [3, 4] is one
of the main mechanisms that drive morphogenesis [5], and hence, embryoge-
nesis [6]. Cells are able to ‘sense’ fitness and eliminate those ones in their
vicinity which are less fit or damaged [7] via cell competition.

Due to the complexity of the spatial interactions involved, the role that
cell competition plays in the formation of the gastrula remains a conundrum.
In order to comprehend how different competition mechanisms control gas-
trulation, a quantitative approach describing the cell population dynamics



is imperative. With this aim in mind, in this project, we will model and
explore different aspects of cellular competition by looking at the cell pop-
ulation dynamics of a two-dimensional embryonic cell culture (see Figure 3A).

Recent research has revealed different genes essential in determining the
fitness of neighbouring cells during cell competition. Particularly, the gene
p53, which stops abnormal cells from proliferating. Gene p53 triggers apop-
tosis (programmed cell death) or produces cell-cycle arrest when a cell’s DNA
has been damaged, impeding cell proliferation.

Defective p53 could result in cancer [8] [9], and an excess of its protein
may lead to earlier aging [10]. This is why it is of growing interest within
the biomedical community to see how p53-gene mutants, in particular p53-/-
cells (cells lacking both p53 alleles), compete with its counterpart, the wild-
type (WT) species (p53+/+).
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Figure 3: A) Figure is adapted from [11]. Images A1-A3 show fluorescent
images of a 2D cell culture, a 3D cell culture, and an in vivo mouse embryo
respectively. C1-C3 are graph coloured versions of A1-A3. . B) Experimental
data courtesy of Tristan Rodriguez. The first graph shows the population
growth of two different cultures of WT and p53 -/- cells, and the second, a
co-culture of the two species.

For what has been stated in the previous paragraphs, one expects that
the in a co-culture of WT and p53-/- cells, the higher fitness of p53-/- cells
will result in the eventual extinction of the WT species. This has been shown



to happen both experimentally (see Figure 3B) and theoretically [12]. How-
ever, in order to understand the relevance of this competition during early
gastrulation, we need to understand the time scale of this process as well as
other effects such as demographic stochasticity, one of the main sources of
variability in ecological systems [13].

Stochasticity arises from the uncertainty and randomness associated to
the interaction and cell fate decisions of individual cells [14]. There are two
main sources of stochasticity: intrinsic noise (e.g. gene regulation, intra-
cell variation of protein production, the diffusive nature of the intra-cell
medium); and extrinsic noise (e.g. temperature variations, cell dynamics,
environmental fluctuations). Mathematically, we can associate this stochas-
ticity by assigning probabilities to cell dynamics, proliferation and apoptosis
events. This allows us to build mathematical models that incorporate the
demographical stochasticity observed during early gastrulation.

The aim of this project is to understand how competition during early
gastrulation controls the time scale of the population growth. To do so, we
will explore two different population models. On the one hand, a mean-field
model describing the population dynamics as a coupled system of equations
and, on the other hand, an agent-based model that incorporates spatial cell-
to-cell interactions and cell motility.

Agent-based models

Agent-based modelling (ABM) is a computational modelling methodol-
ogy used to describe complex systems as a collection of self-sufficient entities
called agents. These entities interact with each other following a predeter-
mined set of rules [15]. Examples of agents range from cells of the immune
system to stock master investors [16].

ABM is a very useful tool to design, test, and analyse in silico experi-
mental arrangements in a rule-based, discrete-event, and discrete-time fash-
ion [17]. In addition, it is a great option when it comes to capturing the
nonlinear and complex behaviour of biological systems like the one at hand

[17].

Most mathematical and computation biomedical models are inductive
models [17], meaning that, given a pattern of data, they infer the mecha-
nisms via which the data was created. Nevertheless, ABMs aim to do the
opposite: they start off with certain mechanisms or rules of behaviour and
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try to reconstruct the observed data patterns. Some of the advantages of
implementing an agent-based model include:

1. ABMs easily integrate space. The agents’ behaviours can be depen-
dent on its immediate environment, which resembles the mechanism
that drives cell competition. The more cells within a neighbourhood,
the more strongly they will compete, and the more likely they are to
die. This feature is very beneficial when looking at any population’s
dynamics given the spatial inherence of mathematical biology [19].

2. ABMs cover aggregated dynamics. If local conditions are changed, so
will be the fates of each cell affected by them. This will lead of a
higher-level system behaviour arising from the parallelism of the dif-
ferent behavioural trajectories of each agent. An example of this is
collective cell migration [20]. A general leader in order is not needed
in order to create distinct trajectorial patterns.

3. ABMs can be designed to incorporate stochasticity. For example, we
can estimate the proliferation rate for the cell population as a whole,
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and then implement its respective probability function for each cell as
an agent behavioral rule. By doing this, we can infer and test if our
system follows deterministic rules, that could not be easily detected
only with observations and experimental data.

4. Information can be added to ABMs effortlessly. Given their modular
structure, we can conveniently introduce new cell types or change the
behaviour rules of the existing ones without having to rebuild the whole
model [17]. This allows us to easily change the course of our research
to test different hypotheses if needed.

5. ABMs are useful to track emergent behaviours. ABMs portray ac-
curately the nonintuitive nature of the entire system, which cannot
normally be extracted from the rules of the agents alone. The different
figures produced by birds in a flock are a good example of emergent
behaviour [21].

6. ABMs can be built given incomplete knowledge. Testing very simple
behavioural rules, e.g. each cell’s death rate grows with number of
neighbouring cells, can already give us a reasonable amount of infor-
mation about the system at hand. Although a more detailed model
will probably provide a better correlation with reality, given how little
is our actual biological knowledge, we will never be able to predict the
very exact system’s behaviour.

For this project, given the computational resources available, we chose
to use a hybrid modelling framework: on the one hand, ordinary differential
equations (ODEs) are used in those cases where mean-field approximations
are suitable to describe the system; and ABM, with the cells being the agents,
when spatial effects are not negligible (e.g. when we take into account short
cell-to-cell signalling) [17]. Modelling the concentration of the different cell
species with partial differential equations (PDEs) would be a natural next
step to bridge both limits (see Figure 5). However, this is beyond the scope
of this project (see conclusions for further discussion).
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3 One species system

3.1 Constant intrinsic growth
3.1.1 Continuous description

Mathematical models have played an essential role in building our under-
standing of population dynamics in biology [19]. One of the simplest models
is the exponential growth model, sometimes also referred to as the Malthu-
sian growth model [22]:

Let N(t) be the number of cells at time ¢. Then, % is the rate of change,
and j%,% is the per capita rate of change of this population [23]. In an isolated
system with no migration, N(t) can only vary as a result of proliferation and
cell deaths. Assuming the per capita birth or proliferation rate b and per
capita death or apoptosis rate d are positive constants, we can express this

law of conservation of number of individuals as follows:

1 dN
—— =0b—d. 1
N dt (1)

Equation (1) is normally rewritten as

%:(b—d)NETN, (2)

where r is the difference between the per capita birth and death rates
and is known as intrinsic growth rate.

Given N(0) = Ny (No € N) as the initial number of cells, we can easily
solve Equation (2), which leads to

N(t) == No e”.

This solution describes a non-stable population. If » > 0, the population
will explode, meaning lim; ,,, N(t) = oco. For r < 0, the population will
become extinct at large times, i.e., lim; o N(t) = 0. If Ny = 0, N(t) will
remain at 0 for all times regardless of the sign of r, since N* = 0 is an equi-
librium point.

Exponential growth is an unrealistic model with several limitations:

1. It does not account for environmental resources availability or intraspe-
cific competition or cooperation, which can have an impact on the

12



variation of number of individuals. Consequently, in this model, the
population growth is unhindered, which is unrealistic. [23]

2. The proliferation and death rates, and hence the intrinsic growth rate,
are constant in time. Therefore, cells do not age or differentiate during
our analysis.

3. The number of individuals N(¢) ought to be discrete. Nevertheless, in
order to be able to differentiate this quantity, we consider it to be a
continuous variable.

4. Tt ignores stochastic effects.

3.1.2 Agent based model
Method

The cells in our agent-based model are represented as point-like particles
in a a two-dimensional continuous region. The position of each particle can
be described as ¥ = (x,y) € R? where they can move, proliferate and die.
At each discrete time increment At the particles can do any of the following
actions:

1. Proliferate at a constant per capita birth rate b. The new cell is located
at a distance 2R from the mother cell, where R = 0.1 is an arbitrary
radius for the cells, at an angle 6 = 27 U(0,1), where (0, 1) is the
uniform probability distribution. Therefore:

T daughter (tproliferation) = Tmother (tproliferation) + 2R cos
Ydaughter (tproliferation) = Ymother (tproliferation> + 2Rsin 6

2. Die at a constant per capita apoptosis rate d.

3. Perform a two-dimensional Brownian motion (see Figure 6B) following
the Stochastic differential equation

dz = V2DAt AW

where D is the diffusion coefficient of the cell in the medium and W is a
Wiener Process. This is simulated using the Euler-Maruyama method
[24],

yi(t + At) = y;(t) + V2DAt N(0,1)
where i is an index representing cell : and AV/(0, 1) is a random Gaussian
number of zero mean and standard deviation equal to 1.
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In order to simulate a typical in vitro experiment with a number of cells
that can be greater than 10°, we are going to study a smaller square region of
the dish such that ¥ = {(z,y) | z € [0, L], y € [0, L]}, i.e. ¥ €[0,L] x [0, L],
with periodic toroidal conditions e.g. when a cells exits the sector from the
top, it will be introduced in the box from the bottom (see Figure 5A). We
will choose L = 50 in arbitrary spatial units without loss of generality.

20

Figure 5: The diagram above illustrates the periodic boundary conditions.
It shows two examples: a cell leaving the box by crossing the right-hand side
boundary, and a cell leaving the box through its bottom. Both of them would
re-appear in the opposite boundary.

To simulate the linear birth-death stochastic process compatible with the
exponential process, we implemented stochastic acceptance or rejection of
proliferation and death events by using a Monte Carlo method [25]. For each
of the cells, we generate a random number X from a uniform probability dis-
tribution i.e. X ~ U(0,1). If X is greater than the corresponding per capita
rate (b or d), then the event takes place. Otherwise, the event is rejected.
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In order to reduce the computational cost, we had to give up real-time
information about the system, and “coarse-grain” our problem. This means
data such as the number of cells or their positions was only recorded every
certain number of timesteps.

Notice that the diffusive nature of the cells will not be determinant for
the analysis of the population dynamics in this case. However, it will play
an important role later on when cell-cell signalling is added to the model.

Results

In order to compare the stochastic and deterministic models for exponen-
tial growth, we performed different realizations of the stochastic agent based
model with fixed values of b, d and Ny. After that, we calculated the aver-
age number of cells at each timestep to give us an estimate of the expected
number of cells at time t, (N(t)) (see Figure 6).

As expected from a linear birth-death process, the average of the stochas-
tic model (N(t)) coincides with the deterministic description (see Figure 6A).

In addition, it is important to note that varying the value of the diffusion
coefficient D for fixed b, d and Ny does not affect our final results. We
still recover the deterministic model. This is due to the absence of spatial
interactions within the cells in this model. A more detailed analysis of the
probability distribution of having N cells at time ¢ can be carried out by
solving the Master Equation of the birth-death process [26]. Nevertheless,
we did not discuss this case further because of its lack of biological interest.

3.2 Competition
3.2.1 Continuous description (mean-field)

The simple exponential growth model can be adequate to describe cell
population dynamics at early times. However, in a more realistic set-up, the
population size of cells is limited and smaller than the intrinsic growth [27]
due to competition for space and nutrients or direct cell-to-cell competition.

To acommodate restricted growth, Verhulst [28] proposed the logistic
growth equation in 1838. It assumes there is an upper bound on the pop-
ulation size, whose notation Pearl and Reed popularised in the 1920s [27],
called the carrying capacity (K). It can be seen as a saturation level for the
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Figure 6: A) Evolution of the number of cells in time for different values of the
intrinsic growth. For each condition, 100 stochastic trajectories (thin lines),
their average in time (solid line) and the deterministic prediction (dashed
line), are compared. B) Example of the trail in time (lines) of a cell of the
agent-based model following a Brownian motion in arbitrary spatial units.
The initial and final positions are indicated with a white and black circle
respectively.

number of individuals an environment can sustain.

The logistic Verhulst-Pearl equation is normally expressed in the following
form:

N (1-%). 3)

This representation is equivalent to considering a linear correction of the
intrinsic growth rate of the population that decays proportionally to the
number of cells in the dish.

Equation (3) has solution

KNy
(K — N()) e "t + N07

N(t) =

16
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Figure 7: A1-A3 are snapshots at ¢t = 0, ¢t = 100 and ¢ = 1000 respectively, of
a stochastic exponential growth simulation with b = 0.0050 and d = 0.0010.
B1-B3 compare the stochastic and deterministic models for b = 0.0030 and
d = 0.0010 and initial number of cells Ny = 10 in increasing diffusion D.
The shaded part represents the standard deviation of the stochastic mean

for N(t).

where N is the number of cells at ¢ = 0.

Only the case where r > 0 is relevant in a proliferating cell culture, so
we will restrict our analysis of the logistic growth equation to the r > 0 case

from now on.

These are some key points that characterise logistic growth:

1. As time increases, the population size approaches its carrying capacity,

K.

ie., lim o N(t)

17




2. Equation (3) has two equilibrium points: N* =0 and N* = K.

e In the neighbourhood of N* = 0, N% is small in comparison to N,

SO we can write AN
— ~rN.
dt

This means that, for » > 0, small perturbations about the origin
grow exponentially [23]. Thus, we have that N* = 0 is an unstable

equilibrium point.

e In order to understand the behaviour of N(t) in the vicinities of
N* = K, let us introduce a change of variable, n = N — K [23].
This new variable measures the deviation of N from K. Rewriting

Equation (3) in terms of n gives us

dn T,
=—-rn——n’,

dt K

which can be approximated to

dn

— & —rmn,
dt

for small n, i.e., as N — K. Hence, small perturbations about
N* = K decay exponentially, and we conclude N* = K is asymp-

totically stable.

3. Depending on the initial number of cells, Ny, solutions to the logistic
equation (with > 0) will have different shapes. There are three main

regimes:

e Solutions with Ny > K decay exponentially towards N = K.
o If Ny = K, then N(t) = K Vt. Similarly, if Ny = 0, then N(t) =

0 Vt.

e Solutions to the logistic equation with Ny < K have sigmoidal
shape, and are fudamentally a combination of exponential growth
close to zero and exponential decay close to K, as shown in 2.
This means this sort of solutions are concave (upwards) just above
N* =0 and convex (upwards) just below N* = K — there must
be an inflection point lying between the origin and the carrying

capacity. Setting ‘ﬁ%

(4). That is N = K/2.

18
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All of the above is equivalent to considering birth and death rates do not
longer remain constant as competition is introduced in the system — they
will be dependent on N, and therefore, on time.

dN
5 = [BIN) = 3(N)]N, (5)

where B(N) is the proliferation rate and 6(/N), the apoptosis rate.

Experimental data suggests 3(/V) can be taken to be constant, i.e.,
B(N) ~ b. Therefore, by taking a linear approximation for §(N),
O(N) ~ dy +dy N, with dy, di € RT/{0} constants, and plugging it in
Equation (5), we arrive at

dnN

We can recover Equation (3), the logistic growth equation, from Equation
(6) by letting b — dy = r and d; = r/K.

Equation (6) still describes a mean-field interaction where the apoptosis
rate depends on the total number of cells. For instance, when cells move at
great speeds so there are no spatial correlations, or when the interactions are
long range (e.g. through a diffusible molecule or hormone).

3.2.2 Agent based model (short-range interactions)
Method

Similarly to the continuous discrete model, we can implement competi-
tion for resources in the agent-based model by using the same rules displayed
in 3.1.2, except for the birth and death rates, which will be allowed to depend
with the population density.

We can rewrite Equation (6) in terms of the area density of cells within
the square region, py, :

dN N
dN

— =bN — (dy + dyp  L*) N
1 (0+ 1PL )
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Figure 8: A cell with a radial range of interaction of /. Neighbouring ells
that move within the inner part of the circumference will contribute towards
this cell’s apoptosis rate.

N

where pr, = 75.

This means 6(t) = dy+ dypr, L?, which is the same for all cells (mean-field
approximation).

However, in a more realistic situation, each cell would have its own
apoptosis rate, dependent on the number of neighbouring cells. Therefore,
we introduce short-range interactions by assuming each cell only interacts
with other cells within a circumference with center itself and radius ¢ with
0 </ < L, i.e., cell-cell signalling distance is fixed to ¢ (see Figure that I still
need to add).

The apoptosis rate for cell ¢ would be

0i(t) = do + dipy L2, (7)

where p), = %, being N} the number of cells within a radial distance ¢
from cell ¢.

In summary, for the competition agent-based model, cells can perform
the following actions:

1. Proliferate at a constant per capita birth rate b.

2. Die at an apoptosis rate d(¢) dependent on the density of cells in their
vicinity, and which is computed as shown in Equation (7).

20



3. Perform a two-dimensional Brownian motion with diffusion coefficient
D, in the same fashion as it was presented in section 3.1.2.

As it was also mentioned in section 3.1.2, real-time information about the
system was given up in order to make the computations more time efficient
— data was recorded every few timesteps, rather than at every single one.
This is the case for each cell’s apoptosis rates, which were only updated after
a specific number of iterations, rather than at each timestep, in some cases.

Results

As in the exponential growth model, we start our analysis by comparing
the average number of cells at time t, (N (¢)) for the mean- field interaction
(¢ — o0) resulting from the agent based model.

After performing n > 1 stochastic experiments with mean-field competi-
tion, we see that varying the diffusion does not affect the final outcome, in
analogy to section 3.1.2, as we expected. Once more, since cells have fixed
rates of proliferation, apoptosis, and competition, this means they can ‘sense’
all cells in the plate and therefore, local spatial effects are negligible — we
recover the deterministic scene.

However, when we turn on cell-cell signalling, the diffusive behaviour of
cells plays an important role on the outcome of the model. There are two
main regimes:

1. ¢/ << L.

For low diffusion (see A1l in Figure 9), cells eventually get extinct,
which does not agree with the deterministic prediction. This is due
to the short mean displacement of cells. Once cells divide, the daugh-
ter cells will stay within the interaction range of the mother cells for
longer than they would for greater diffusions, and will induce a greater
apoptosis rate. This will result in an increase of the effective apopto-
sis rate for both mother and daughter cells after division. For higher
diffusions, nonetheless, the short-range model resembles more the de-
terministic prediction. Cells ‘notice’ more cells on the plate, but for
shorter times, which lets the population increase steadily.

In Figure 9 (A2), the number of cells does not attain the deterministic
saturation level, but in (A3), it surpasses it. Increasing the diffusion in
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this regime speeds up the growth of the population.

.4~ L.

The range of the interactions is comparable to the size of the square
quadrant we are analysing. In this limit, the mean-field model is a good
approximation to describe the problem. B2 in Figure 9 is the case that
resembles the deterministic prediction the most with a typical value
of D. However, for low D, the theoretical prediction for the carrying
capacity is surpassed by the stochastic model.
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b =0.040 and d = 0.010. B1-3 show the same model for ¢ = 25.
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Figure 10: Histograms of the final number of cells, Nynq, for 250 stochastic
trajectories of N(t). The values of D and ¢ for each of them are: (A) D =
0.01, ¢ = 0.5; (B) D = 10.000, ¢ = 0.5; (C) D = 0.01, ¢ = 25.0; (D)
D = 10.000, ¢ = 25.0.

We performed a statistical analysis of the final number of cells Ny;,q; of
the stochastic trajectories. We looked at the frequency of the different final
numbers of cells. However, we did not find any significant changes in the
mean of the histogram (see Figure 10 (C) and (D)).
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Figure 11: Plots of (Nyfina) vs D with a fixed value of ¢: (Al) ¢ = 0.5 and
(A2) ¢ = 25.0. Plots of (Nyinq) vs £ with a fixed value of D: (B1) D = 0.001

and (B2) D = 10.000.

In addition, we also looked at the final number of cells average when fixing
the diffusion and varying the interaction range, and viceversa. Once more,
we did not find any significant features or different conclusions from the ones
we extracted from the plots in Figure 9. We can see that in Figure 11 (B1)
and (B2), the average final number of cells on the plate is similar for the same
values of ¢ even though we are at different regimes for D. This means that,
to analyse the system further, we would have to look at the times where the
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population’s saturation level is attained, rather than at what the saturation
level is itself.

4 'Two species system

4.1 Continuous description (mean-field)

We start off with two decoupled populations of cells that grow logistically
when bred in separate cultures. Let N(¢) be the number of WT cells at time
t, and P(t), the number of p53-/- cells. Then, we have

dN
dpP

where by and bp are the proliferation rates for WT and p53 -/- cells
respectively, and dy (N) = dy + ayN and ép (P) = dp + apP are their re-
spective apoptosis rates.

Now, let us consider the case scenario where both species are bred in the
same plate — a co-culture of WT and p53-/- cells. We assume the presence
of p53 mutants causes a decrease in the per capita growth of the WT species
due to competition for resources, and vice-versa. This effect is called inter-
specific competition and it occurs amongst individuals of different species, as
opposed to intraspecific competition, presented in section 3.2, and reintro-
duced in this section in Equations (8) and (9) in the form of the ay and ap
coefficients.

In order to track the repercussions of this effect on the system’s population
dynamics, we introduce a pair of interspecific competition coefficients, ¢ and
cp, which measure how strongly p53 mutants compete with WT cells, and
how strongly WT cells compete with p53-/-, respectively. Thus, we arrive at
the Lotka-Volterra competitive equations [23] (in phenomenological form)

dN

7 = %N = (dy +ayN + exP) N (10)
4P
o7 =bpP = (dp+apP +cpN) P: (11)
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where by and bp are the proliferation rates of WT and p53-/- cells, and
On (N,P) =dy + ayN + cyP and 0p (N, P) = dp + apP + c¢pN are their
respective apoptosis rates when in co-culture, with ay and ap being the inter-
specific competition coefficients, and ¢y and cp, the intraspecific competition
ones, and by, bp, dy, dp, ay, ap, cy, cp all € RT/{0}.

Experiments show that the p53-/- mutants population drive WT cells to
extinction [12], meaning there is no asymptotically stable coexistence state
(see Figure 3B). Because of behaviour the p53 -/- cells exhibit, we expect
that WT and p53-/- cells compete strongly with the other species than with
their own species, and we will assume that WT cells compete more or equally
strongly for resources amongst each other than p53 mutants. This leads to
the following inequality for the competition coefficients:

cp<ap <Lan <cy (12)

Mathematically, we can address coexistence by looking at the point where
the non-trivial N and P nullclines cross in the phase portrait of the system.
If this point is within the first quadrant, i.e., if N and P are positive, then
we could have either a stable steady state (coexistance) or unstable steady
state. This crossing point being in the first quadrant is, therefore, a neces-
sary condition for coexistance (but not a sufficient one).

The relevant system of equations that defines the interior state
(N, P) = (N*, P*) is
(bN — dN) = CLNN* + CNP* (13)
(bp-dp) :CLPP*—|—CPN*. (14)
Solving for P in Equation (12) gives
bN — dN) — CLNN*
CN '

Plugging this last expression for P* into Equation (13) leads to the fol-
lowing expression for N*:

P*:(

(bp —dp) — 22(bn — dw)

—ap an
cN + cp

Assuming by — dy = bp —dp =1 > 0 leads to

r -2
* CN
N - ; —1 —_ apay . (15)

CNCp
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Since r/cp > 0, for non-coexistence we need what is inside of the brackets
in (15) to be negative. This can be achieved in two different ways:

(a) 1 —22>0and 1— 22% < (), which implies ay < cp.

CN cNep
(b) 1 -2 <0and1—¢E2% >0, which implies cp < ay.

Therefore, since (b) is the only case in agreement with (12), we will
concentrate on in silico experiments with these coefficient constraints in our
agent-based model.

4.2 Agent based model (short-range interactions)

Method

For the two species agent-based model, we will inherit the same be-
havioural and spatial rules displayed in sections 3.1.2 and 3.2.2. Neverthe-
less, now we have to take into account interspecific competition, i.e., coupling
within the two different cell types — WT cells and p53-/- mutants.

This means that now each of the cells’ apoptosis rate not only depends on
the number of their same species’ neighbouring cells, but also in the density
of the other cell type within a fixed interaction radial distance /.

Hence, we have that the apoptosis rate for a WT cell i (N) and for a p53
-/- cell j (P) are

v =dn + (an piyn +cn pyp) L (16)
0p = dp + (ap ppp +cp ppy) L (17)

where:
e dy, dp, ay, ap, cy and cp are defined as in the previous section (4.1).

o Py = % is the density of WT cells in the neighbourhood of the WT
cell i, with N} being the number of WT cells within that neighbour-
hood.

o pip = % is the density of p53-/- cells in the neighbourhood of the
WT cell ¢, with P} being the number of p53-/- cells within that neigh-
bourhood.
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° pgap = ﬂP—;JQ is the density of p53-/- cells in the neighbourhood of the
p53-/- cell j, with P} being the number of p53-/- cells within that
neighbourhood.

° pf; N = ﬂN—g‘i is the density of WT cells in the neighbourhood of the p53-/-
cell j, with P} being the number of WT cells within that neighbour-
hood.

Results

After comparing the average number of cells at time t, (N(¢)) and (P(t))
for the mean- field interaction (¢ — o) resulting from the agent based model,
we see that we recover the deterministic model when in the mean-field regime.

Just like in the one species model, we see that for short-range signalling
(see Al in Figure 12), both populations get extinct. As we increase the dif-
fusion coefficient, we observe that now both populations grow more steadily
and compete more strongly, since cells have greater average displacements,
and therefore, encounter more cells in their paths. Eventually, for great diffu-
sions (see A3 in Figure 12), the stochastic model with short-range signalling
starts to catch up with the deterministic prediction.

On the other hand, when ¢ ~ L, we still see that the stochastic model
improves its fitting to the deterministic one as we increase D (see Figure 12
B1-3).

Overall, in both cases we observe that modifying the diffusion for a fixed
signalling-range results in effectively controlling the timescale of the trajec-
tories. However, due to the limited computational resources and the time
available for this project, we could not tackle this feature further. It would
proceed to look at the times at which the maximum for N is attained rather
than at the difference between N and P, which is what follows in this section.

Another important feature of the diffusion is clustering. We explored
this effect by carrying out video simulations of the plate as shown in Figure
13. For typical values of diffusion (see Figure 13 A1l and A2), cells are well-
mixed in the plate, even in the presence of cell competition. However, for
low diffusions (see Figure 13 B1 and B2, with no diffusion), we observe that
both species form clusters and respect some virtual spatial barriers created
by competition.
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Figure 13: Snapshots at t = 0 and ¢t = 1000 of a two-species simulation are
shown for (A1-2) D =0 and (B1-2) D = 0.25. WT cells are shown in blue,
and pd53 mutants, in green.

In order to understand further how diffusion controls the time scale of
population growth in our two species model, we performed an analysis on
the number of WT cells and p53 mutants at the time when we have a maxi-
mum for the population of WT cells.

We explored two different times — when the deterministic N attains its
maximum, and when the stochastic NV does.

In any of the cases, we did not see much difference in the averages of

N(t*) and P(t*) for fixed values of ¢ (Figure 16 A B) and varying D versus
the averages of N (t4e:) and P(tger)
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Figure 14: Histograms of the maximum stochastic value of N at time t*,
N(t*), and its corresponding value of P at that time, P(¢*), for (A) D = 0.001
and ¢ = 0.5, (B) D = 10.000 and ¢ = 0.5, (C) D = 0.001 and ¢ = 25.0, (D)
D =10.000 and ¢ = 25.0.
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5 Conclusions and discussion

In this paper, we have engineered an agent-based model to understand in
vitro cell competition during early gastrulation within two different cell types
— WT cells and p53-/- cells. All throughout, we have considered point-like
cells moving with Brownian dynamics in a two-dimensional square region
with periodic boundary conditions with arbitrary time and spatial units.

The modular structure of the project inherent to ABMs has helped us
moving upwards in levels of complexity in an approachable way. However,
this has been possible at the expense of computational power, which is lim-
ited in a typical academic setting like ours.

As mentioned in the main text, one of the limitations of agent based
models is the requirement to compute interactions between a large number
of individuals. Further research of this project should require more powerful
computing resources, which would also make easier analysing the problem’s
statistical and asymptotic behaviour.

Whilst the model allowed to explore the role that cellular dynamics and
range of interaction have on competition between different cellular subtypes,
in order to have a more realistic description of the system, it is paramount
to incorporate other possible cellular interactions, both physically and chem-
ically.

From section 3.2.2 on, we implemented cell-cell signalling within a fixed
radial distance ¢. This scheme accounts for paracrine signalling (targeted to
cells in the vicinity of the emitting cell) and endocrine signalling (targeted to
more distant cells) in the limit of large £. Nevertheless, there are other types
of close-range signalling, like signalling via the secretion of hormones (au-
tocrine and intacrine signalling), used to regulate intracellular events, that
we did not include in the model. Some cells even interact with touching cells
by using the proteins that are attached to the cell membrane (juxtacrine sig-
nalling). What is more, the rate of signalling transmission and propagation
[29] is not necessarily constant.

It is also important to remark that, in the two species case, we focused
on the case where the signalling distance is identical for both species. That
is, if £y and {p are the interaction range of the WT cells and p53 -/- cells
respectively, then we simplified the problem by assuming {y = {p = ¢, al-
though we did implement different signalling ranges for each cell type in the
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code.

Aside from cellular signalling, a more realistic scenario should include
contact forces between the cells. On the one hand, repulsive forces were not
implemented in our model, which allowed cells to "walk over” each other,
or even ”"go through” each other without colliding. For this reason, the
problem can be virtually seen as a three-dimensional one, rather than two-
dimensional, setting the first steps towards a more accurate study of in vitro
embryonic development. Additionally, a molecular dynamics (MD) approach
could be taken in the future, where cells could be thought of as hard-spheres
carrying out perfectly elastic collisions [30].

On the other hand, attractive forces within cells and between the cells and
the plate result in cell adhesion [31]. However, by assuming periodic bound-
ary conditions, we completely disregarded of cell-plate attractive forces on
the edges of the petri dish. A higher spatial scale could be considered if in
possession of better computational resources in order to account for cell-plate
adhesion. Regarding cell-cell adhesion, an energetics and thermodynamical
outlook could be taken, as considered in [31].

In addition to competition and mechanics, cells will also undergo differen-
tiation, which will make them acquire different cellular identities correspond-
ing to the progress of gastrulation. We expect that these upgrades change
the physiology of the cell. This will incorporate variations in time to the
different system parameters that had been considered constant during the
work, such as proliferation or interaction terms.

Access to experimental data in the future would provide better contex-
tualisation and more concreteness to the model. Bayesian inference could be
preformed to parametrise the system more accurately, and find tighter and
more precise coefficient constraints. In addition, experimental data would
help us contrast the different time scales. In this aspect, understanding
when the deterministic model is a good approximation for the behaviour of
the agent based model can be an invaluable tool to accelerate the computer
demand of such inference methods.

Another way of improving our model would be to consider a third agent
— the substrate. Experimentally, the substrate concentration and the disolu-
tion rate are relatively easy to control and measure in the lab. Furthermore,
these two directly have an effect on the number of cells that can be sustained
on the plate. This is why it would be useful to consider a so-called resource-
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based or chemostat model [23].

Other examples of different approaches to the problem include evolution-
ary games and graph theory, where cells are compelled to occupy only the
spaces available in a matrix [32], or to consider an age-structured population.
Each ”age” of the cell would correspond to a stage within the cell-cycle. There
would be two different ways of escaping the cycle: by cell cycle arrest (i.e. by
entering the so-called GO phase), or by apoptosis, both of them depending
on the density of neighbouring cells.

Finally, the most natural next step to take in this project would be to
analyse the system using PDEs. We could study the concentration of cells
in the plate with time and space being the dependent variables [33], or by
using the Fokker-Plank equation [32].

Overall, in this work we have shown how combining mathematical and
computational methods of different complexity can help us gain insights in
cell competition during early embryo development. This emphasizes the
thriving importance of mathematical modelling in biology, revealing not only
potential analytical and computational tools to tackle the problem, but also
guiding new experiments to achieve a mechanistic understanding of embryo
formation.
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6 Appendix

In this section we include the most relevant script of the project, on
which all the other scripts are built upon. For the complete set of files and
Python scripts used for plotting and creating video simulations, please visit
https://bitbucket.org/2piruben/cellcomp /src/master/.

This script contains two main functions. The first one, cells_evolution,
adds new cells to the system, removes dying cells, and diffuses cells. It in-
cludes the Monte Carlo method for acceptance of birth and death processes
and the periodic boundary conditions to put the cells back in the box if they
exit it.

The second function, run_cells_linear, contains the loop in time, and calls
cells_evolution in every iteration. This is how the dynamics of the system
arises. It has two modalities — you can either turn on short-range inter-
actions, or use a mean-field approximation. Within the short-range mode,
distances between cell pairs are computed in order to calculate the effective
apoptosis rate of each cell.

You can accommodate this script for each of the cases described in this
project by changing the values of each cell types and their corresponding
coefficients.

# -*- coding: utf-8 -x-

Created on Wed Nov 27 10:48:12 2019

@author: casmp

.onnn
>

import numpy as np
from random import choices

#This script contains the functions regarding two species
cell competition

5 #Time variables

dt = 0.025

timelapse = 1 # how often to record
Tfinal = 202

n = int(Tfinal/dt) #timesteps
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s # dP / dt =

#Spatial variables

= 50 #length of box

1N = 0.5 #interaction range
P

1 # diffusion coefficient

diam = 0.1 # distance from each other at which cells divide

#Initial number of cells for each species (N and P)

NO = 5
PO =5

# Equations:
# dN / dt =

b_N * N - (d_N +
b_P * P - (d_P +
#Proliferation rates

b_N = 0.070

b_P = 0.070

#Death rates
d_N 0.00005 #for species N
d_P 0.00005 #for species P

#Coupling constans
#N

a_N= 0.00080 #with N
c_N= 0.0010 #with P

P
P = 0.00080 #with P
P= 0.00060 #with N

# a_x -> competition with its

a_
a_

for species N
20 #interaction range for species N

N
12

own species x
# c_x -> competition of x with the other species y

def cells_evolution(cellNumber,

if cellNumber > O:

u = np.random.rand(cellNumber)

thrown cellNumber times

v = np.random.rand (cellNumber)

40

+ ¢c_N * P) *x N
c_P x N) * P

cellarray, #kills or

gives birth to cells and moves them around

#proliferation die

#death die thrown
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cellNumber times

proliferatingCells = u < axdt # axdt = probability
of a cell proliferating in that time window

survivingCells = v > d*dt # b*dt = probability of a
cell dying in dt

new_d = d

# Limiting events to one event per dt (either one
cell dies or one cell proliferates)

if (np.sum(proliferatingCells)+np.sum(np.logical_not (
survivingCells)) > 0):

prob_prol = np.sum(proliferatingCells)/(np.sum(
proliferatingCells)+np.sum(np.logical_not(survivingCells))

)

if prob_prol < np.random.rand(1):
proliferatingCells = np.zeros(cellNumber,
dtype=bool) #no cells proliferating
dyingCell = choices (population=np.arange(
cellNumber), k=1, weights=np.logical_not(survivingCells)/
np.sum(np.logical_not(survivingCells))) #cel that has
been randomly chosen to die

survivingCells = np.ones(cellNumber, dtype=
bool)
survivingCells [dyingCell [0]] = False
else:
survivingCells = np.ones (cellNumber, dtype=
bool)
prolCell = choices(population=np.arange (

cellNumber), k=1, weights=proliferatingCells/np.sum(
proliferatingCells))

proliferatingCells = np.zeros(cellNumber,
dtype=bool)

proliferatingCells [prolCell [0]] = True

# newcells_O is the new cells that will be added to
the system

newcells_0= cellarray[proliferatingCells]

newcells_d = new_d[proliferatingCells]

cellNumber += np.sum(proliferatingCells)
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100

101
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103
104
105
106

107

108

109

# If a proliferation event occurs, we add the

daughter cell to the system at an angle theta from its
mother cell

if np.sum(proliferatingCells) > O:
theta = np.random.rand(np.sum(proliferatingCells)

) *2%np.pi

11D

newcells_x = newcells_O[:,0]+diam*np.cos(theta)
newcells_y newcells_O[:,1]+diam*np.sin(theta)

newcells=[]
for i, cellx in enumerate (newcells_x):
newcells.append ([newcells_x[i], newcells_y[i

newcells_0O = newcells

# removing dying cells

cellarray = cellarray[survivingCells]
new_d = new_d[survivingCells]
cellNumber -= np.sum(np.logical_not(survivingCells))

# adding newcells
cellarray = np.vstack((cellarray,newcells_0))
new_d = np.hstack((new_d,newcells_d))

# moving cells
cellarray[:,0] = cellarray[:,0] + np.sqrt(D*dt)=*np.

random.normal (size=cellNumber) # diffusion x

cellarray[:,1] = cellarray[:,1] + np.sqrt(D*dt)*np.

random.normal (size=cellNumber) # diffusion y

# Back to the box (PBCs)

# cell exits the box from the left
exitBoxLeft = cellarrayl[:,0]<0

mLeft = abs(cellarrayl[exitBoxLeft ,0]/L)
cellarray [exitBoxLeft ,0] += np.ceil (mLeft)*L

# cell exits the box from the right
exitBoxRight = cellarray[:,0]>L

mRight = abs(cellarray[exitBoxRight ,0]/L)
cellarray [exitBoxRight ,0] -= np.floor (mRight)*L

# cell exits the box from the bottom
exitBoxBottom = cellarrayl[:,1]<0

mBottom = abs(cellarray[exitBoxBottom ,1]/L)
cellarray[exitBoxBottom ,1] += np.ceil (mBottom)*L
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143 # cell exits the box from the top

144 exitBoxTop = cellarrayl[:,1]1>L

145 mTop = abs(cellarray[exitBoxTop,1]/L)
146 cellarray[exitBoxTop,1] -= np.floor (mTop) *L
147

148 return (cellNumber , cellarray, new_d)
149

150 else:

151 # i.e. if cellNumber == 0

152 return (0,np.zeros (0) ,np.zeros (0))

153

154

156 def run_cells_linear(D,1_N, 1_P, interaction="all_plate"):

158 # Initialitation of the variables

159 t =0

160 history_cells = [] #N(t) & P(t)

161 initcelllistN = [] # 1list of cells N

162 initcelllistP = [] # 1list of cells P

163 nextrecordtime = 0 # next time to record time
164

165 # starting the population

166

167 # The information of the species N will be stored as an
array with two columns, cellarrayN.

168 # Each row is a N cell and the two columns are its x and
y coordinates, respectively

170 for k in range (NO):

171 initcelllistN.append ([np.random.rand () *L,np.random.
rand () *L])

172 cellarrayN = np.array(initcelllistN)

173 cellNumberN = NO # This variable will count the number of

N cells at each time point

175 # Similarly, for P.

176 for k in range (PO):

177 initcelllistP.append ([np.random.rand ()*L,np.
random.rand () *L])

178 cellarrayP = np.array(initcelllistP)

179 cellNumberP = PO # This variable will count the number of

P cells at each time point

181 # Loop in time

182 for i in range(n):

183

184 # SHORT-RANGE SIGNALLING
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187

189
190

191

193

194

195

196

197

198

199

200

201

202

203

if (interaction == "short_range"):

#Death coefficient for each cell depending on
cell density every 10 iterations
if i%10==0:

cellNumberN_N_1 = np.array(np.zeros(
cellNumberN)) #number of cells of species N within range
1 from cells of species N

cellNumberP_P_1 = np.array(np.zeros/(
cellNumberP)) #number of cells of species P within range
1l from cells of species P

cellNumberN_P_1 = np.array(np.zeros(
cellNumberN)) #number of cells of species P within range
1 from cells of species N

cellNumberP_N_1 = np.array(np.zeros/(
cellNumberP)) #number of cells of species N within range
1l from cells of species P

#Calculate density of cells within 1 for each
individual of species N and each death rate
for icell, celli in enumerate(cellarrayN):

for jcell, cellj in enumerate(cellarrayN)

if (jcell > icell):
dx_N = min(abs(cellj[0]-celli[0])
, L - abs(cellj[0]-cellil0]))
dy_N = min(abs(cellj[1]-celli[1])
, L - abs(cellj[1]-celli[1]))
dist_N_N = (dx_N#*x2 + dy_Nx*%*2)
**%0.5 #distance to each N cell

if dist_N_N < 1_N:
cellNumberN_N_1[icell]l+= 1
#number of N cells within range 1 surrounding N cell i
cellNumberN_N_1[jcell]l+= 1

#Density of cells: P vs P
for icell, celli in enumerate(cellarrayP):

for jcell, cellj in enumerate(cellarrayP)

if (jcell > icell):
dx_P = min(abs(cellj[0]-celli[0])
, L - abs(cellj[0]-celli[0]))
dy_P = min(abs(cellj[1]-celli[1])
, L - abs(cellj[1]-celli[1]))
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216

239

dist_P_P = (dx_P#**2 + dy_Px*%*2)
*%0.5

if dist_P_P < 1_P:
cellNumberP_P_1[icelll+= 1 #
number of P cells within range 1 surrounding P cell i
cellNumberP_P_1l[jcell]l+= 1

# Density of cells: N vs P and P vs N
for icell, celli in enumerate(cellarrayN):

for jcell, cellj in enumerate(cellarrayP)

dx_N_P = min(abs(cellj[0]-cellil[0]),
L - abs(cellj[0]-celli[0]))
dy_N_P = min(abs(cellj[1]-celli[1]),

L - abs(cellj[1]-celli[1]))
dist_N_P = (dx_N_P#**2 + dy_N_P*x2)
**x0.5 #distance to each P cell

if dist_N_P < 1_N:
cellNumberN_P_1[icell]l+= 1 #
number of P cells around cell number i of N species

if dist_N_P < 1_P:
cellNumberP_N_1[jcelll+= 1 #
number of N cells around cell number j of P species

#Calculating death rate vector (each
effective apoptosis rate) for each species

dcell_ N = d_N + a_N*(cellNumberN_N_1/(np.pi*
1_N#**2))*(L**2) + c_N*(cellNumberN_P_1/(np.pi*1_N#*%2))x*(L
*%2)

dcell P = d_P + a_Px(cellNumberP_P_1/(np.pi*
1_P*x*2))*x(L*x2) + c_P*(cellNumberP_N_1/(np.pi*1_Px*x*2))x*(L
*%2)

#calculate surviving and dying cells and move
surviving cells around
cellNumberN, cellarrayN, dcell_N =
cells_evolution(cellNumberN, cellarrayN, b_N, dcell_N)
cellNumberP, cellarrayP, dcell_P =
cells_evolution(cellNumberP, cellarrayP, b_P, dcell_P)

else:
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265

266

#calculate surviving and dying cells and move
surviving cells around

cellNumberN, cellarrayN, dcell_N =
cells_evolution(cellNumberN, cellarrayN, b_N, dcell_N)

cellNumberP, cellarrayP, dcell_P =
cells_evolution(cellNumberP, cellarrayP, b_P, dcell_P)

# LONG-RANGE SINGALLING

elif (interaction == "all_plate"):
dcomp_N = d_N + a_N*cellNumberN + c_N*cellNumberP
dcomp_P = d_P + a_Px*cellNumberP + c_P*cellNumberN

dcomp_N = np.ones(cellNumberN)x*dcomp_N
dcomp_P = np.ones(cellNumberP)x*dcomp_P

#calculate surviving and dying cells and move
surviving cells around

cellNumberN, cellarrayN, dcomp_N =
cells_evolution(cellNumberN, cellarrayN, b_N, dcomp_N)

cellNumberP, cellarrayP, dcomp_P =
cells_evolution(cellNumberP , cellarrayP, b_P, dcomp_P)

# updating time and saving N(t) if necessary
t =t + dt

if t >= nextrecordtime:
# We record the information about the system
after a specific timelapse
history_cells.append ([t,cellNumberN,cellNumberP])
nextrecordtime += timelapse

return np.array(history_cells), cellarrayN, cellarrayP
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